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Computing the Range of a
Function-of-Few-Linear-Combinations Under
Linear Constraints: A Feasible Algorithm

Salvador Robles, Martine Ceberio, and Vladik Kreinovich

Abstract In many practical situations, we need to find the range of a given function
under interval uncertainty. For nonlinear functions – even for quadratic ones – this
problem is, in general, NP-hard; however, feasible algorithms exist for many spe-
cific cases. In particular, recently a feasible algorithm was developed for computing
the range of the absolute value of a Fourier coefficient under uncertainty. In this
paper, we generalize this algorithm to the case when we have a function of a few
linear combinations of inputs. The resulting algorithm also handles the case when,
in addition to intervals containing each input, we also know that these inputs satisfy
several linear constraints.

1 Formulation of the Problem

First case study: Fourier transform. In many application areas, an important
data processing technique is Fourier transform, that transforms, e.g., the values
x0,x1, . . . ,xn−1 of a certain quantity at several moments of time into values

Xk =
n−1

∑
i=0

xi · exp
(
−i · 2π · k · i

n

)
,

where i def
=

√
−1. These values are known as Fourier coefficients.

Since exp(i ·x) = cos(x)+ i ·sin(x), the value Xk can be written as Xk = Ak+ i ·Bk,
where
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Ak =
n−1

∑
i=0

xi · cos
(

i · 2π · k · i
n

)
and Bk =−

n−1

∑
i=0

xi · sin
(

i · 2π · k · i
n

)
.

In addition to the real part Ak and imaginary part Bk of each Fourier coefficient,

it is also important to know the absolute value (modulus) Mk
def
= |Xk|=

√
A2

k +B2
k of

each Fourier coefficient.

Need for interval uncertainty. The values xi come from measurements, and mea-
surements are never absolutely exact: the measurement result x̃i is, in general, dif-
ferent from the actual (unknown) value xi of the corresponding quantity; see, e.g.,
[8]. In many practical situations, the only information that we have about the mea-
surement error ∆xi

def
= x̃i −xi is the upper bound ∆i on its absolute value: |∆xi| ≤ ∆i.

In such situations, after the measurement, the only information that we have about
the actual value xi is that this value belongs to the interval [xi,xi], where xi = x̃i −∆i
and xi = x̃i +∆i; see, e.g., [4, 6, 7].

Need to estimate the ranges under interval uncertainty. In general, processing
data x0, . . . ,xn−1 means applying an appropriate algorithm f (x0, . . . ,xn−1) to com-
pute the desired value y = f (x0, . . . ,xn−1).

In the case of interval uncertainty, for different possible values xi ∈ [xi,xi] we
have, in general, different possible values of y = f (x0, . . . ,xn−1). It is therefore de-
sirable to find the range of possible values of y:

[y,y] def
= { f (x0, . . . ,xn−1) : xi ∈ [xi,xi] for all i}. (1)

In particular, it is desirable to compute such ranges for the values Ak, Bk, and Mk
corresponding to Fourier transform.

Ranges of Fourier coefficients: what is known. The values Ak and Bk are linear
functions of the quantities xi, and for a linear function

y = c0 +
n−1

∑
i=0

ci · xi,

the range is easy to compute: this range is equal to [ỹ−∆ , ỹ+∆ ], where

ỹ = c0 +
n−1

∑
i=0

ci · x̃i and ∆ =
n−1

∑
i=0

|ci| · xi.

The problem of computing the range of Mk – or, what is equivalent, the range of
its square M2

k – is more complicated, since M2
k is a quadratic function of the inputs,

and, in general, for quadratic functions, the problem of computing the range under
interval uncertainty is NP-hard; see, e.g., [5]. However, for the specific case of M2

k ,
feasible algorithms – i.e., algorithms that compute the range in time limited by a
polynomial of n – are known; see [2].
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Need to take constraints into account. In addition to knowing the ranges [xi,xi] for
each quantity xi, we also often know that the actual values xi do not change too fast,
i.e., e.g., that the consequent values xi and xi+1 cannot change by more than some
small value ε > 0: |xi+1 − xi| ≤ ε , i.e., equivalently, −ε ≤ xi+1 − xi ≤ ε.

Motivation: second case study. In the previous example, we had a nonlinear func-
tion – namely, the sum of two squares – applied to linear combinations of the in-
puts. There is another important case when a nonlinear function is applied to such
a linear combination: data processing in an artificial neural network, where a non-
linear function s(z) – known as activation function – is applied to a linear combi-

nation z =
n−1
∑

i=0
wi · xi +w0 of the inputs x0, . . . ,xn−1, resulting in the output signal

y = s
(

n−1
∑

i=0
wi · xi +w0

)
; see, e.g., [1, 3]. In this case, we may also be interested in

finding the range of the possible values of y when we know intervals of possible val-
ues of the inputs xi – and maybe, as in the previous case, some additional constraints
on the inputs.

General formulation of the problem. In both cases studies, we have a function
f (x0, . . . ,xn−1) which has the form

f (x0, . . . ,xn−1) = F(y1, . . . ,yk), (2)

where k is much smaller than n (this is usually denoted by k ≪ n) and each y j is a
linear combination of the inputs

y j =
n−1

∑
i=0

w j,i · xi +w j,0. (3)

• In the Fourier coefficient case, k = 2, and F(y1,y2) =
√

y2
1 + y2

2.
• In the case of a neuron, k = 1, and F(y1) is the activation function.

We know the intervals [xi,xi] of possible values of all the inputs xi, and we may also
know some linear constraints of the input values, i.e., constraints of the form

n−1

∑
i=0

ca,i · xi ≤ ca,0, cb,0 ≤
n−1

∑
i=0

cb,i · xi, or
n−1

∑
i=0

cd,i · xi = cd,0, (4)

for some constants ca,i, cb,i, and cd,i, and we want to find the range [y,y] of the func-
tion (3) under all these constraints – interval constraints xi ∈ [xi,xi] and additional
constraints (4), i.e., we want to find the following interval
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[y,y] =

{
F

(
n−1

∑
i=0

w0,i · xi +w0,0, . . . ,
n−1

∑
i=0

wn−1,i · xi +wn−1,0

)
: xi ∈ [xi,xi],

n−1

∑
i=0

ca,i · xi ≤ ca,0, cb0 ≤
n−1

∑
i=0

cbi · xi,
n−1

∑
i=0

cd,i · xi = cd,0

}
. (5)

In this paper, we design a feasible algorithm that computes the desired range –
under some reasonable conditions on the function F(y1, . . . ,yk).

2 Analysis of the Problem and the Resulting Algorithm

What are reasonable conditions on the function F(y1, . . . ,yk): discussion. We
want to come up with a feasible algorithm for computing the desired range of the
function f (x0, . . . ,xn−1). In general, in computer science, feasible means that the
computation time t should not exceed a polynomial of the size of the input, i.e.,
equivalently, that t ≤ v · np for some values v and p – otherwise, if this time grows
faster, e.g., exponentially, for reasonable values n, we will require computation times
longer than the lifetime of the Universe; see, e.g., [5]. For computations with real
numbers, it is also reasonable to require that the value of the function does not grow
too fast – i.e., that it is bounded by a polynomial of the values of the inputs.

It is also necessary to take into account that, in general, the value of a real-valued
function can be only computed with some accuracy ε > 0, and that the inputs xi can
also only be determined with some accuracy δ > 0. Thus, it is also reasonable to
require that:

• the time needed to compute the function with accuracy ε is bounded by some
polynomial of ε (and of the values of the inputs), and

• that the accuracy δ with which we need to know the inputs to compute the value
of the function with desired accuracy ε should also be bounded from below by
some polynomial of ε (and of the values of the inputs).

To make sure that the function f (x0, . . . ,xn−1) has these “regularity” properties, we
need to restrict ourselves to functions F(y1, . . . ,yk) that have similar regularity prop-
erties – otherwise, if even computing a single value F(y1, . . . ,yk) is not feasible, we
cannot expect computation of the range of this function to be feasible either. Thus,
we arrive at the following definition.

Definition 1. Let T def
= (vF , pF ,va, pa,qa, tc, pc,qc) be a tuple of real numbers. We say

that a function F(y1, . . . ,yk) is T -regular if the following conditions are satisfied:

• for all inputs y j, we have |F(y1, . . . ,yk)| ≤ vF · (max |y j|)pv ;

• for each ε > 0, if |y j − y′j| ≤ δ
def
= va · (max |y j|)pa · εqa , then
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|F(y1, . . . ,yk)−F(y′1, . . . ,y
′
k)| ≤ ε;

• there exists an algorithm that, give inputs y j and ε > 0, computes the value
F(y1, . . . ,yk) with accuracy ε > 0 in time Tf (y1, . . . ,yk)≤ tc · (max |y j|)pc · εqc .

Comment. One can easily check that the Fourier-related function F(y1,y2) =√
y2

1 + y2
2 is T -regular for an appropriate tuple T .

Definition 2. Let T be a tuple, let F(y1, . . . ,yk) be a T -regular function, and let W,
X and ε be real numbers. By a problem of computing the range of a function-of-
few-linear-combinations under linear constraints, we mean the following problem.
Given:

• a function (2)-(3), where |w j,i| ≤W for all i and j,
• n intervals [xi,xi] for which |xi| ≤ X and |xi| ≤ X for all i, and
• m linear constraints (4),

compute the ε-approximation to the range [y,y] of this function for all tuples of
values xi from the given intervals that satisfy the given constraints.

Proposition. For each tuple T , for each T -regular function, and for each selections
of values W, X, and ε , there exists a feasible algorithm for computing the range of
a function-of-few-linear-combinations under linear constraints.

Comment. In other words, we have an algorithm that finishes computations in time
bounded by a polynomial of n and m.

Proof. Since |xi| ≤ X and |xi| ≤ X , we conclude that for all values xi ∈ [xi,xi], we
have |xi| ≤ X . Since |w j,i| ≤W , from the formula (3), we conclude that

|y j| ≤ n ·W ·X +W,

hence max |y j| ≤ n ·W ·X +W .
To compute the value of the function F(y1, . . . ,yk) with the desired accuracy ε ,

we need know each yk with accuracy δ proportional to (max |y j|)pa . In view of the
above estimate for max |y j|, we need δ ∼ na. We can divide each interval

[−(n ·W ·X +W ),n ·W ·X +W ]

of possible values of y j into sub-intervals of size 2δ . There will be

2(n ·W ·X +W )

2δ
∼ n

na = n1−a

such subintervals. By combining subintervals corresponding to each of k variables
y j, we get ∼ (n1−a)k = n(1−a)·k boxes.

Each side of each box has size 2δ . Thus, each value y j from this side differs
from its midpoint ỹ j by no more that δ . So, by our choice of δ , for each point y =
(y1, . . . ,yk) from the box, the value F(y1, . . . ,yk) differs from the value F(ỹ1, . . . , ỹk)
at the corresponding midpoint by no more than ε .
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Hence, to find the desired range of the function f , it is sufficient to find the
values F(ỹ1, . . . , ỹk) at the midpoints of all the boxes that have values y satisfying
the constraints. Since each value of f is ε-close to one of these midpoint values, the
largest possible value of f is ε-close to the largest of these midpoint values, and the
smallest possible of f is ε-close to the smallest of these midpoint values. Thus, once
we know which boxes are possible and which are not, we will be able to compute
both endpoints of the desired range with accuracy ε .

There are no more than ∼ n(1−a)·k such midpoint values, and computing each
value requires ∼ npc time. So, once we determine which boxes are possible and
which are not, we will need computation time ∼ n(1−a)·k ·npc = n(1−a)·k+pc .

How can we determine whether a box is possible? Each box

[y−1 ,y
+
1 ]× . . .× [y−k ,y

+
k ]

is determined by 2k linear inequalities y−j ≤ y j and y j ≤ y+j , j = 1, . . . ,k. Substituting
the expressions (3) into these inequalities, and combining them with m constraints
(4), we get 2k +m linear constraints that determine whether a box is possible: if
all these constraints can be satisfied, then the box is possible, otherwise, the box is
not possible. The problem of checking whether a system of linear constraints can be
satisfied is known as linear programming. There exist feasible algorithms for solving
this problem, e.g., it can be solved in time ∼ (n+(2k+m)) ·n1.5; see, e.g., [9, 10].
Checking this for all ∼ n(1−a)·k boxes requires time ∼ n(1−a)·k · (n+2k+m) ·n1.5.

The overall time for our algorithm consists of checking time and time for actual
computation, i.e., is bounded by time ∼ n(1−a)·k · (n+m) · n1.5 + n(1−a)·k+pc . This
upper bound is polynomial in n and m.

Thus our algorithm is indeed feasible. The proposition is proven.
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